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Abstract

In the present paper an attempt is made to describe transverse cracking of cross-ply ð½0�n=90�m�sÞ laminates subjected
to an external applied load and a temperature change. For this purpose a new method is suggested which was developed
on the basis of the energy balance based finite fracture criterion suggested by Hashin (1996) [Hashin, Z., 1996. J. Mech.
Phys. Solids 44, 1129]. In this approach the value of the specific surface energy (the critical energy release rate) is
assumed to be dependent on a random microdamage distribution in the material. Hence, it is assumed to be a random
function of location. A new probabilistic technique is developed to take this randomness into consideration. It is shown
that only one unknown probabilistic function is required, namely the probability density function of the specific surface
energy. This is determined by fitting the external stress and the corresponding crack density to experimental data for
any specific laminated system. The cracking process for any other laminate made of the same material may be predicted
by the suggested method. Numerical simulation of progressive cracking process is described, which provides the prob-
ability density function for inter-crack distances as well as the crack density growth with increasing external loading. A
simple probabilistic progressive cracking criterion is developed as well. The predicted crack density growth calculated
for various laminates is in good agreement with published experimental results.
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1. Introduction

The problem of damage accumulation in laminated composite materials, loaded mechanically and/or
thermally, has recently received much attention due to widespread applications of laminates in the aeronau-
tic and automotive industries. Nevertheless, the prediction of damage accumulation is still a very difficult
problem due to complexity of the cracking processes.

Two most popular approaches to composite damage analysis are continuum damage mechanics and
micromechanics of damage. In continuum damage mechanics all damage states are generalized into a dam-
age tensor expressing the state of damage that can include matrix cracking, fiber breakage, interfacial
debonding, or ply delamination. The composite is then treated as a continuum under states of stress
and strain and the goal is to find constitutive relations between stress, strain and damage (e.g. Talreja,
1985, 1981, 1986). The approach uses no fracture mechanics or theories of crack propagation and therefore
does not make any predictions about damage propagation. It only attempts to describe the relation be-
tween the mechanical properties and the level of damage, and to be useful, requires additional experimental
input.

Micromechanics of damage is concerned with analysis and prediction of various types of damage. It is
typically a two-step process. The first step is to use micromechanics methods to analyze the stress distribu-
tion in a composite in the presence of certain types of damage, which must be described on the basis of
experimental observations (for example, matrix cracking of 90� in cross-ply laminates, or matrix cracking
together with delamination, or fiber breakage of fibers in 0� layers). The stress analysis is to be carried out
for stress distributions in the composite with the observed damage. This stage almost always requires
approximate stress analysis due to the complexity of the problems.

After the information about the effect of observed damage on the stresses and effective material proper-
ties is estimated, the second step is to establish a failure criterion and predict the conditions under which
that damage initiates and grows. It is important to note that these steps are completely independent.
Any available stress analysis can be used with any failure criterion, and an appropriate approach must
be developed at each of the steps.

The simplest of the laminated structures are ½0�n=90�m�s laminates, also known as cross-play laminates.
This implies that the laminate consists of plies which are unidirectional fiber composites, the fiber directions
in adjacent layers are orthogonal, n and m are the number of plies in each layer and s denotes symmetry.
Many observations have confirmed that the first form of damage in cross-ply laminates loaded in tension is
matrix cracking or microcracking in the off-axis plies. Microcracks are observed in 90� plies in which they
are termed transverse cracks. Microcracks are observed during static loading, fatigue loading, thermal load-
ing or any combination of these loadings. At the further stages of loading the transverse microcracks can
promote delamination between the off-axis ply and the adjacent ply, longitudinal splitting in the 0� plies
and, finally, the laminate failure. The most extensive review of the related literature published up to
1990 may be found in Nairn and Hu (1994).

The first systematic study of microcracking in ½0�n=90�m�s laminates that includes the effect of laminate
structure is the work of Garrett and Bailey (1977a,b); Parvizi et al. (1978); Parvizi and Bailey (1978); Bailey
et al. (1979); Bailey and Parvizi (1981). Their experiments were on glass–reinforced polyester (Garrett and
Bailey, 1977a,b) and glass–reinforced epoxy (Parvizi et al., 1978; Parvizi and Bailey, 1978; Bailey et al.,
1979; Bailey and Parvizi, 1981) under quasi-static loading. They varied the thickness of the 90� layer while
keeping the thickness of 0� plies constant. It was shown that for thick 90� plies, the transverse microcracks
originate at the edge of the specimen and propagate instantaneously through the cross-section of 90� layer.
For thin plies and more ductile matrix the microcracks originate at the edge and propagate through the
specimen width under the load control. Their experiments showed that the strain to initiate microcracking
increases as the thickness of 90� decreases (Parvizi et al., 1978) They used careful microscopy to investigate
the origins of microcrack initiation. It was found that the microcracks are generally associated with
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processing flaws, voids and regions of high fiber volume fraction and initiate with debonding at the inter-
face between the fiber and the matrix.

Continued loading generally leads to the formation of more transverse microcracks. Many investigators
have carried out experiments counting the number of microcracks during quasi-static loading. Microcracks
density results have been reported for different ½0�n=90�m�s laminates: Boniface and Ogin (1989) Highsmith
and Reifsnider (1982); Caslini et al. (1987); Wang et al. (1985); Takeda and Ogihara (1994a,b); Ogihara
et al. (1997); Adolfsson and Gudmundson (1999); Yalvaç et al. (1991); Nairn et al. (1993); Liu and Nairn
(1992); Nairn and Hu (1994) All the results are qualitatively similar: after formation of the first microcrack
there is a rapid increase in microcrack density with increasing applied load. Eventually the rate of increas-
ing in microcrack density slows down and it reaches a saturation level.

Due to the importance of transverse microcracking for the damaged laminate stiffness, numerous at-
tempts have been made to compute stress distributions in the cracked laminate. The most widely used ap-
proach, found its popularity due to its simplicity, is so-called ‘‘one-dimensional analysis’’. This approach
was originated by Garret and Bailey in 1977 (Garrett and Bailey, 1977b) for analysis in the case of an iso-
lated transverse crack. Manders et al. (1983) extended their results for interacting microcracks. The ap-
proach was a subject of many discussions and improvement efforts in numerous papers (see Bailey et al.,
1979; Ogin et al., 1985a,b; Reifsnider, 1977; Flaggs, 1985; Fukunaga et al., 1984; Han et al., 1988; Laws
and Dvorak, 1988). The method is called ‘‘one-dimensional’’ emphasizing the nature of the suggested
assumptions: zero stresses or zero displacements in the transverse direction (z-direction in Fig. 1). The
method leads to unacceptable results, such as nonzero shear stresses on the crack surfaces. So-called
‘‘two-dimensional’’ analysis introduced in Flaggs (1985); Fukunaga et al. (1984) considers the y-direction
whose inclusion does not improve the approach and is little more than a correction for Poisson�s contrac-
tion, which is marginal from the conceptual point of view.

Some efforts have been done to avoid the deficiency of the ‘‘one-dimensional’’ approximation. Reifsnider
(1977) introduced a shear stress transfer layer of unknown thickness and stiffness in between plies, and as-
sumed that this layer carries only shear while the plies carry only tensile stress. A major disadvantage of this
approach, called ‘‘shear-lag analysis’’, is that the parameters of the shear transfer layer are unknown and
must be determined by fitting to experimental results. In spite of the disadvantages of the ‘‘shear-lag’’ anal-
ysis and critical comments in the literature (Hashin, 1985, 1987; Nairn, 1989), it continues to grow in pop-
ularity because of its simplicity: most of its modifications can be reduced to a single differential equation
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Fig. 1. Cracked cross-ply laminate loaded in tension and a typical region between two adjacent cracks.
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(Nairn and Hu, 1994). Thus, the method was extended for stress distribution analysis in the presence of
delamination zones around an isolated transverse crack by Dharani and Tang (1990). It is important to
note, that no one-dimensional analysis can predict differences between ½0�n=90�m�s and ½90�n=0�p�s, observed
experimentally.

Finite element analysis has also been used to calculate the stress field in cracked laminates both in the
presence of transverse microcracks (Wang et al., 1984) and transverse microcracks and delamination (Wang
et al., 1985). The method is helpful for numerical verification of predictions of analytical approximations
for stress distribution and as an ‘‘experimental measurement’’ of the effective stiffness of a damage material.
It is limited by defining a specified stacking sequence, material properties, loading conditions and damage
location, and hence, requires hundreds of calculations to describe a laminate behavior. However, finite ele-
ment analysis, together with fracture mechanics, may be a unique tool capable for describing a more geo-
metrically complex problem, such as partial microcrack, like propagating from the coupon edge in the
width direction. Such solutions may be found in the literature Berthelot et al. (1996a,b, 2001).

A more accurate stress analysis approximation is a variational approach established by Hashin (1985,
1987, 1988). The method is based on the principle of minimum complementary energy and admissible stress
fields which satisfy all boundary and equilibrium conditions. The effective stiffness of damaged laminate
obtained by this stress analysis is in good agreement with the experimental results. It does not assume zero
stresses in the z-direction and contains no artificial parameters, and hence, does not have the disadvantages
of the ‘‘shear-lag’’ method. Nairn (1989) included thermal stresses into consideration and later applied
Hashin�s variational mechanics analysis to the problem of transverse microcracks in ½90�n=0�p�s laminate
(Nairn and Hu, 1992) and delamination near the transverse crack tip (Nairn and Hu, 1991).

After a stress analysis is applied and stress fields in the presence of any damage state are found, the next
step is to predict the damage development. In order to describe how microcracks will progress and which
damage mode will dominate at the next moment, one has to establish a failure criterion.

Various failure criteria have been proposed in the literature. Recently, Soden et al. (1998) published an
extensive review of several existing static failure theories for composite laminates, sorting them according to
predicted failure modes and suggested assumption, and verifying by experimental results. A brief compar-
ison of some failure theories for transverse cracking of laminates can be found in the surveying work by
Nairn and Hu (1994).

In short, neither the numerous strength criteria (Soden et al., 1998) nor statistical theories (Fukunaga
et al., 1984; Flaggs and Kural, 1982; Peters, 1984) can correctly describe various features of the phenom-
enon. Thus, for strength models, there is no unique critical stress/strain leading to the failure of transverse
plies. Using strength theories one must consider the lamina strength as an in situ parameter depending on
the stacking sequence, that discounts the method as a tool for failure prediction. Statistical strength models,
based on two-parameter Weibull distribution of the 90� ply strength, fail because those parameters must
also depend on laminate structure to fit experiments (Flaggs and Kural, 1982; Peters, 1984).

The failure of strength-based criteria led Parvizi et al. (1978) to propose an energy criterion. They pos-
tulated that the first microcrack forms when the energy released due to the formation of that microcrack
exceeds some critical value. Since the work of Parvizi et al. (1978), the energy criterion has gained popu-
larity and appeared in references: Parvizi and Bailey (1978); Bailey et al. (1979); Bailey and Parvizi
(1981); Caslini et al. (1987); Liu and Nairn (1992); Han et al. (1988); Laws and Dvorak (1988); Nairn
and Hu (1992).

Many authors used one-dimensional stress analyses to calculate the energy release rate (Garrett and
Bailey, 1977b,a; Parvizi et al., 1978; Parvizi and Bailey, 1978; Caslini et al., 1987; Han et al., 1988; Laws
and Dvorak, 1988). In view of disadvantages of one-dimensional stress analysis approaches, Nairn (1989)
referred to Hashin�s variational method (Hashin, 1985) and found that it leads to acceptable prediction of
crack initiation and accumulation. Later, Hashin (1996) developed an energy balance based brittle fracture
criterion using his variational analysis. A problematic assumption about regular spaced microcracks
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suggested by Nairn does not appear in Hashin�s criterion. This method, called ‘‘finite fracture mechanics’’,
was generalized and applied to various problem in Hashin (1998).

In the present paper the variational analysis is utilized to estimate the stress fields in a cracked laminate
subjected to an applied load and a temperature change. The finite fracture criterion is modified to describe
progressive cracking in cross-ply laminates. Within the framework of the energy balance approach, we as-
sume randomness in the specific surface energy by relating it to a random distribution of flaws in the mate-
rial. This is in contrast to the previous models, where probabilistic methods have been applied to the
material strength. Taking advantage of both the energy balance based approach and the probabilistic ap-
proach, we are able to describe the growth of the crack density with applied stress in a very accurate man-
ner. It is shown that the probability density function for the specific surface energy requires modification,
being applied to different laminates. The technique for probability density function modification is
developed.
2. Variational stress analysis

Let us consider a cross-ply laminate subjected to initial cool-down T from manufacturing curing temper-
ature to the room temperature and subsequent uniform in-plane membrane tensile loading Nx in the 0�
direction, Fig. 1. The average stress applied to the laminate is
r0 ¼ Nx=2h;
where 2h is the laminate thickness. It is assumed that the layers can be considered as anisotropic homoge-
neous with effective properties of the unidirectional fiber composite. For undamaged linear elastic laminate
the only existing stresses rxx in the different layers may be written
r01
xx ¼ r1 ¼ k1r0 þ r1T ;

r02
xx ¼ r2 ¼ k2r0 þ r2T ;

ð1Þ
where the coefficients k and r depend on laminate geometry and material properties. The subindexes 1, 2
indicate the 90� and 0� layers, respectively.

Consider now a cracked laminate, where the 90� ply has developed continuous interlaminate cracks in
fiber direction and perpendicular to the plane of the laminate. The cracks are ‘‘though-the-ply’’ and divide
the transverse ply into segments connected only by the adjacent 0� plies (Fig. 1). For the cracked laminate
an admissible stress field is assumed, which satisfies equilibrium, interlaminar traction continuity and exter-
nal boundary conditions, but not compatibility. The longitudinal stresses are assumed in the form (Hashin,
1985)
ra1
xx ¼ r1½1� /1nðxÞ�;

ra2
xx ¼ r2½1� /2nðxÞ�;

ð2Þ
where /1n and /2n are unknown functions, n stands for the nth segment between two adjacent cracks. The
equilibrium equations for the plies are
orak
xx=oxþ orak

xz =oz ¼ 0;

orak
xz =oxþ orak

zz =oz ¼ 0;
ð3Þ
where k = 1,2 is the ply number. It follows that the admissible stresses within a typical region between two
cracks (Fig. 1) are given by
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ra1
xx ¼ r1ð1� /nðxÞÞ; ra2

xx ¼ r1ð1þ 1=k/nðxÞÞ;
ra1
xz ¼ r1/

0
nðxÞz; ra2

xz ¼ ðr1=kÞ/0
nðxÞðh� zÞ;

ra1
zz ¼ r1/

00
nðxÞðht1 � z2Þ=2; ra2

zz ¼ ðr1=kÞ/00
nðxÞðh� zÞ2=2:

ð4Þ
Here /n(x) = /1n(x), k = t2/t1, t1 and t2 are the ply thicknesses, primes denote x differentiation.
Since normal and shear stress must vanish on crack surfaces x = ±an the function /n must satisfy the

boundary conditions
/nð
anÞ ¼ 1; /0
nð
anÞ ¼ 0: ð5Þ
An optimal function /n(x) is constructed by utilization of the principle of minimum complementary energy.
Substituting the admissible stress (4) into the expression for the complementary energy
Ua
C ¼ 1

2

Z
V
Sijklr

a
ijr

a
kl dV ;
where Sijkl is the compliance tensor of the unidirectional fiber reinforced material, i, j,k, l = x,y,z. Solving
the variational problem for /n, the following Euler–Lagrange equation and the boundary conditions are
obtained
d4/n

dn4
þ p

d2/n

dn2
þ q/n ¼ 0; /nð
qnÞ ¼ 1; /0

nð
qnÞ ¼ 0; ð6Þ
where
n ¼ x=t1; qn ¼ an=t1; p ¼ ðC02 � C11Þ=C22; q ¼ C00=C22;

C00 ¼ 1=ET þ 1=kEA; C02 ¼
mT
ET

ðk þ 2=3Þ � mA
3EA

k;

C22 ¼ ðk þ 1Þð3k2 þ 12k þ 8Þ=60ET; C11 ¼ ð1=GT þ 1=kGAÞ=3:

ð7Þ
The elastic properties are: EA the axial Young�s modulus in fiber direction, mA the associated axial Poisson�s
ratio, ET the transverse Young�s modulus, mT the associated transverse Poisson�s ratio, GA the axial shear
modulus and GT the transverse shear modulus.

The characteristic equation of (6) is
r4 þ pr2 þ q ¼ 0; ð8Þ

which produces four roots of the complex form ±(a ± ib) where i ¼

ffiffiffiffiffiffiffi
�1

p
, or real ±a, ±b, depending on

values of the coefficients p and q. For widely used materials and stacking geometries the complex form
of the roots is relevant. In this case the solution of the differential equation (6) provides
/nðnÞ ¼ An coshðanÞ cosðbnÞ þ Bn sinhðanÞ sinðbnÞ; ð9Þ

where
An ¼ 2
a coshðaqnÞ sinðbqnÞ þ b sinhðaqnÞ cosðbqnÞ

a sinð2bqnÞ þ b sinhð2aqnÞ
;

Bn ¼ 2
b coshðaqnÞ sinðbqnÞ � a sinhðaqnÞ cosðbqnÞ

a sinð2bqnÞ þ b sinhð2aqnÞ
:

This defines the admissible stress field (4).
Calculation of the complementary energy change due to transverse crack presence leads to
DUa
C ¼ r2

1t
2
1C22

X
n

vðqnÞ ð10Þ
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where the sum is over all blocks bounded by adjacent cracks and
vðqnÞ ¼ � d3/n

dn3

����
qn

¼ 2abða2 þ b2Þ coshð2aqnÞ � cosð2bqnÞ
a sinð2bqnÞ þ b sinhð2aqnÞ

: ð11Þ
A typical plot of function v(q) for a graphite/epoxy laminate is shown in Fig. 2. It should be noted that
when the cracks are far apart the function achieves its asymptotic value, which is equal to
vð1Þ ¼ 2aða2 þ b2Þ: ð12Þ
3. Energy based cracking criterion

Assume that the number of transverse cracks due to an external mechanical load and temperature
change increases spontaneously from Nn to Nn + 1. According to Hashin (1996), the energy release DCn

at nth step of the brittle cracking process may be expressed as:
DCn ¼ UCðrnþ1Þ � UCðrnÞ; ð13Þ
where UC is a complementary energy, rn and rn+1 are the stress fields before and after formation of new
cracks. The main assumption here is that these new cracks appear instantly, and the external load does
not change during the process of new crack formation. Thus, both rn and rn + 1 are evaluated at the same
external load. The right side of this equation may be rewritten by adding and subtracting the complemen-
tary energy of an uncracked laminate subjected to the current loads
DCn ¼ UCðrnþ1Þ � UCðr0Þ
� �

� UCðrnÞ � UCðr0Þ
� �

; ð14Þ
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where r0 is the stress in the undamaged material due to the same external load. The expressions in the two
brackets are known on the basis of the variational approach (Hashin, 1996), yielding
DCn ¼
1

2

Z
V

Drnþ1SDrnþ1dV � 1

2

Z
V

DrnSDrn dV ; ð15Þ
where
Drnþ1 ¼ rnþ1 � r0;

Drn ¼ rn � r0
and the stress fields include both mechanical and thermal parts.
The integrals in the right-hand side of Eq. (15) represent complementary energy difference between two

states: the uncracked and cracked laminate under the same loading conditions. This complementary energy
change has been approximated using variational mechanical analysis for the purpose of estimation of the
stress field and given by Eq. (10). Assuming (10) is an accurate approximation of the energy change, DC
obtains the form
DCn ¼ r2
1t

2
1C22

XNnþ1

i

vðqnþ1
i Þ � r2

1t
2
1C22

XNn

i

vðqn
i Þ; ð16Þ
where r1 is the stress in undamaged 90� ply, qn
i is the nondimensional crack spacing for ith block at nth

cracking step, Nn and Nn + 1 are the number of cracks before and after new crack formation, respectively,
and v is defined by (11).

Let us assume that there exists a material property c, which defines the required energy to separate mate-
rial bulk and create a unit of new free surface, such that
DCn ¼ cDAn ð17Þ

where DAn is the area of newly formed cracks. The introduced parameter c is the specific surface energy,
and being defined as an energy release per unit area, it is analogous to the critical energy release rate, widely
used in the fracture mechanics. However, in order to emphasize that cracks instantly occupy a finite area,
we will sometimes call c the critical energy release.

Substituting
DAn ¼ Anþ1 � An ¼ t1 Nnþ1 � Nnð Þ

we obtain
c ¼
r2
1t

2
1C22

PNnþ1

i
vðqnþ1

i Þ �
PNn

i
vðqn

i Þ
� 	
t1ðNnþ1 � NnÞ

: ð18Þ
By averaging (18) can be written as follows:
c ¼ r2
1t1C22ðNnþ1vnþ1 � NnvnÞ

ðNnþ1 � NnÞ
: ð19Þ
By representing the mean �q as a continuous variable, one can write
vnþ1 ¼ vn þ dvn

d�q
Dqn; ð20Þ

D�qn ¼ Anþ1

t1
� An

t1
¼ � L

2t1

ðNnþ1 � NnÞ
Nnþ1Nn

; ð21Þ
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where the overbar denotes mean values and L is the laminate length. Substituting this into (19) it may be
shown that the above equation takes the form
c ¼ r2
1t1C22 v � dv

d�q
�q


 �
: ð22Þ
After simple transformation the right-hand side of Eq. (22) may be rewritten
c ¼ �r2
1t1C22

d

d�q
v
�q


 �
�q2: ð23Þ
Hashin (1985) has shown that the lower bound of Young�s modulus of a cracked laminate is defined by
1

E

x

¼ 1

E0

þ k21
t1
h
C22

v
�q
; ð24Þ
where k1 = r1/r0 in the case when the temperature change is absent. Using the relation for the crack area
A ¼ L
2�q
and substituting this together with (24) into (22) one can obtain
c ¼ r2
0

2

d

dA
1

E

x


 �
V ; ð25Þ
where V is the laminate volume. The latter equation is a particular uniaxial homothermal case of general
fracture criterion derived in Hashin (1988)
c ¼ 1

2
�r
oS


oA
�r þ oa


oA
�rT � 1

2

oc
p
oA

T 2

T r

� 	
V

where S* is the effective elastic compliance tensor, a* is the effective thermal expansion tensor, c
p is the effec-
tive specific heat of a composite and Tr is a reference temperature.

Regarding the statistical nature of the variable q, the following may be written:
v ¼
Z 1

0

vðqÞpðqÞdq;

�q ¼
Z 1

0

qpðqÞdq;
where p(q) is a probability density function (PDF) of distances between adjacent cracks, which varies with
the cracking progression. For a known p(q) and c, which is assumed to be a material property, Eq. (22)
describes both crack propagation (�q as a function of applied load) and cracking initiation (the least r1

which leads to the first crack formation). In the latter case substituting q!1, Eq. (22) obtains exactly
the same form as has been obtained before in Hashin (1996):
c ¼ r2
1t1C22v1 ¼ r2

1t1C22vð1Þ: ð26Þ

Here the fact that for a large q the function v(q) becomes constant and independent of q is taken into ac-
count (see Fig. 2), that implies
v ¼
Z

vð1ÞpðqÞdq ¼ vð1Þ
Z

pðqÞdq ¼ vð1Þ; dv
d�q

¼ 0:
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In fact, this means that when the right-hand side of (26), which varies with laminate structure and the load-
ing conditions, reaches the value c which is a material property, the first crack forms. An essential feature of
(22) is that its particular form (26) holds valid until high crack densities. This results in very fast initial crack
density growth without additional load applying.

At the same time, any block between two existing adjacent cracks may be considered separately. Each of
these blocks has the same admissible stress field and during cracking must satisfy the criterion (19), which
may be rewritten for a single block as
c ¼ r2
1C22t1 v

q þ n
2


 �
þ v

q � n
2


 �
� vðqÞ


 �
ð27Þ
where n denotes the coordinate of the new crack location between the two existing cracks. Equation (27)
may be called a ‘‘local’’ criterion for crack formation, because it deals with the location of the next crack.
An example of the function in the parenthesis is plotted in Fig. 3 for three large values of q. It can be seen
that for long blocks, there is a ‘‘noninteraction zone’’ where the value of the energy release has approxi-
mately the same magnitude for any long block. Thus, once the right-hand side of Eq. (27) for a large q
reached its critical value c and cracking is initiated, a chain of fracture events occurs until sufficiently high
crack density. No additional external force is required for that and (26) is valid.
4. Probabilistic concept

The criterion (27) of new crack appearance between two existing transverse cracks, relating the stresses,
material property c, the distance between the cracks and the new crack location n, may be written as
c ¼ GðnÞ; ð28Þ

where the mechanical energy release per unit area G(n) is determined by the right hand side of (27).
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Two probabilistic notions can be introduced: ‘‘geometrical’’ and ‘‘physical’’. The ‘‘geometrical’’ proba-
bility is connected to the probability of new crack formation at one of many expected locations with equal
priority, in other words, at different positions n, where the energy release G(n) has the same value as the
critical energy release c. This is of primary importance in predicting a crack accumulation at the stage
of initial cracking, when there is no interaction between existing cracks and the energy release G(n) has
approximately the same value on a long interval (Fig. 3). This approach is supposed to provide a proba-
bility density function p(q) to be used with criterion (22). It is interesting to note, that for a small dispersion
of q, one can simplify Eq. (22) assuming �v � vð�qÞ. Then (22) reduces to a very simple form:
c ¼ r2
1t1C22 vð�qÞ � dvð�qÞ

d�q
�q


 �
: ð29Þ
However, some disagreements between the prediction and the experimental data are expected. First, the
above approach will predict fast increase of crack density when reaching the stress of cracking initiation,
up to rather high values of the crack density. Contrary to the expectations, experiments demonstrate
smooth, sometime sufficiently slow dependence of crack density growth with external loading (e.g. Nairn
and Hu, 1992). The question also arises as to why the conclusion, directly following from the local energy
criterion, that at high crack densities, new cracks appear in the middle between two existing cracks is not
supported experimentally.

These disagreements may be explained by identifying the critical energy for new surface formation as a
local material property. Inhomogeneities, such as local fiber fraction, interface area between matrix and fi-
bers, local flaw concentration in the matrix and interface, interphase fracture toughness etc. may sufficiently
decrease the cracking energy at some locations: less applied force is required to produce a crack in a cross-

section which contains many flaws and weak interface. In fact, we relate the value of c to the local flaw con-
centration in a material volume element, emphasizing the sensitivity of the critical energy release rate to the
local physical heterogeneity of the material. As an immediate conclusion from the arguments, we can as-
sume that the critical energy release rate c is a function of location. We can also deduce that the values
of c have a stochastic nature, because defect distribution throughout volume is random.

Hence, the ‘‘physical’’ probability is related to the critical energy release c. An essential feature of the
critical energy release c is its sensitivity to preexisting flaws, manufacturing defects or heterogeneities in gen-
eral. Therefore, c should be considered not as a constant, rather as a stochastic function of a location with
some PDF. Dealing with ‘‘through-the-ply’’ transverse cracks, the parameter c may be considered as var-
iable along the laminate direction. Thus, the criterion (28) is satisfied when at any point n the probabilistic
‘‘physical’’ c coincides with the ‘‘mechanical’’ energy release G(n)
cðnÞ ¼ GðnÞ: ð30Þ

Accordingly, both the ‘‘geometrical’’ (location of newly formed cracks) and ‘‘physical’’ (c distribution)
probabilities are included in the formulation and analysis. Here account must be taken of random coinci-
dence between the appearance of any value of c at any cross-section of the transverse ply and the energy
release G(x) at this location. Then the decision is made about the possibility of a new crack nucleation
in that transverse plane.

Within the framework of the energy criterion described above, we can write that the energy of a new
crack formation of area DA is equal
DC ¼
Z

D

Z
A

cðx; y; zÞdy dz ¼ �cðxÞDA; ð31Þ
where �cðxÞ is the crack surface average of c, or in other words, the average energy of unit free surface area
formation at the given transverse cross-section of 90� defined by coordinate x. Accordingly, it is a random
function along the laminate in the load direction x. The physical nature of the local heterogeneity is not
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defined here. The only parameter describing the state of the material microdamage is the critical energy re-
lease rate and its degradation may imply local flaws and interface and/or edge defects.
5. Local toughness

Some restrictions may be imposed on the random distribution �cðxÞ in view of the material heterogeneity.
As known, a transverse crack crosses the 90� ply through the matrix, surrounding fibers and linking fiber–
matrix interfaces (Fig. 4). Considering a typical unidirectional fiber reinforced composite with fiber volume
fraction 0.6, we can deduce that from the geometrical point of view, only one crack may appear between
two adjacent fibers in the longitudinal direction. For a layer of thickness t0 = 0.155 mm and containing
homogeneously distributed fibers with the diameter 0.015 mm, the interval with only one geometrically pos-
sible crack inside may be assumed as about 0.1t0, that includes two fiber radii and some matrix interlayer.
This parameter will be verified later by fitting experimental data.

In general, one can say that a 90� ply may be divided into small intervals of length lr along the transverse
direction, such that inside each interval only one crack may geometrically appear. This characteristic length
σ σ

ρ ρ

Fig. 4. Local toughness element.
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depends only on the geometrical parameters of the material, namely the fiber diameter and fiber volume
fraction. If the above is correct, to each interval element lr only one value of �cðxÞ may be assigned. It will
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describe the damage state inside the volume element DV = lrhb, where lr is the characteristic length, h is the
transverse ply thickness, and b is the laminate width. Moreover, with a high degree of confidence, the values
of c in each element lr may be assumed to be independent from the other elements.

Imagine now a virtual experiment implying that the laminate length is cut into intervals of length lr and
measuring the �c values for each one. Statistical treatment of the data will provide the probability distribu-
tion function prð�cÞ which describes a frequency of some �c value occurrence. Supposing that the data is rep-
resentative, on the basis of this function one can model the random function �cðxÞ for any other laminate
segment and build the numerical simulation of cracking process. In order to evaluate such simulation, ran-
dom numbers for �c must be generated according to the probability density function prð�cÞ. The laminate
must be divided along its longitudinal direction into elements of length lr, in such a way that inside each
element lr only one value of random �c exists.

Generally, any function may be used to describe the distribution prð�cÞ. For the purpose of strength esti-
mation, the Weibull function is usually used, which for random variable c may be written in the following
form:
prðcÞ ¼
a
c0

c � cmin

c0


 �a�1

exp � c � cmin

c0


 �a� 	
; c P cmin ð32Þ
with the cumulative distribution function
P rðcÞ ¼ 1� exp � c � cmin

c0


 �a� 	
; c P cmin: ð33Þ
Here cmin is the minimal possible random variable, restricting the random variable domain for values
c > cmin, a and c0 are constant parameters of the distribution.

The random values of �cðxÞ must be compared with the mechanical energy release rate G(x) in order to
decide about occurrence of a cracking event. If for given stresses there is no any element located at x, such
that G(x) greater than �cðxÞ, additional load is required to increase G(x) for new crack formation. In Fig. 5
several steps of such simulation are presented. Fig. 5(a) shows a uniform function G(x) for an undamaged
laminate under an external stress insufficient for cracking. The function was calculated by (28) and drawn
by the solid line. The points represent random values of �cðxÞ. The arrows indicate the nearest value of �cðxÞ,
which is the next potential crack location. Additional external load increase is required for the function
G(x) to reach this point. After that a new crack is formed at this plane and G(x) vanishes at the crack loca-
tion, Fig. 5(b). The ‘‘used’’ values of �cðxÞ are circled for identification. Subsequent growth of the applied
load leads to a new crack at a plane out of the laminate segment under consideration, that is deduced
observing reduced curve of G(x) at the left-hand side of Fig. 5(c). As before, the next expected crack posi-
tions are pointed out by arrows. Every next appeared crack occurs at higher stress than the previous one. It
can be also noted that the crack locations are not necessarily in the middle distance between the existing
cracks, rather defined by the random distribution of �cðxÞ, Fig. 5(c)–(e) and (h). An example of transforma-
tion of the PDF of the distances between adjacent transverse cracks is shown in Fig. 6.
6. Probability function modification for different laminated systems

According to (31) the average value of the critical energy release rate �c over the crack surface must be
estimated. Thus dealing with through-the-ply transverse cracks, we have to evaluate the average �c over the
90� ply thickness t1. Similarly to the random distribution of the surface energy c along the longitudinal
direction assumed before, a stochastic change of c through the 90� ply thickness is a reasonable suggestion,
because the damage state may vary though the thickness.



Fig. 7. Illustration of different damage states though the laminate thickness.
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Now compare two laminates with stacking sequences ½0�n1=90�m1
�s and ½0�n2=90�m2

�s, where the transverse
plies combine 2m1 transverse sub-layers and 2m1 transverse sub-layers respectively. All the sub-layers have
the same thickness t0 and are made of the same material by the same manufacturing process. Consequently,
in each sub-layer the critical energy release is described by the same probability density function pr(c). How-
ever, the state of damage in the combined sub-plies at the possible new crack location xmay be different due
to its randomness, Fig. 7.

This yields
�c2m1
¼ 1

2m1

X2m1

i¼1

ci;

�c2m2
¼ 1

2m2

X2m2

i¼1

ci;

ð34Þ
where ci is the energy release rate of an element i = 1,2, . . ., 2m1 for the first laminates, in total 2m1 inde-
pendent random variables, all with the same probability density function pt0(c). Similar results apply for
the second stacking sequence.

As is well known from probability theory, the density function for sum z of random variables g and f is
defined by the convolution of their probability densities:
hðz ¼ g þ fÞ ¼ f ðgÞ 
 gðfÞ �
Z z

0

f ðgÞgðz� gÞdg:
Analogously, for our case we can write the probability density of the average critical energy release rate as
follows:
prð�c2mÞ ¼
1

ð2mÞ2m
pt0

c1
2m

� 


 pt0

c2
2m

� 


 � � � 
 pt0

c2m
2m

� 

; ð35Þ
where all of the functions at the right-hand side are the same. The resultant function prð�c2mÞ depends on the
particular form of the participating density functions. It is interesting to note that for most popular distri-
butions like Normal or Gamma distributions, the resultant function keeps the form of the initial function,
but with modified parameters.

For instant, if the Normal distribution function
pt0ðcÞ ¼ Nðc j g;xÞ

with the average g and standard deviation x is used to fit the c probability density function for a t0 slice, the
resultant function prð�c2mÞ obtained by (35) will be also Normal distribution
prð�c2mÞ ¼ N c j g;
xffiffiffiffiffiffi
2m

p

 �
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with modified standard deviation. If Gamma distribution function with parameters a and b is used instead
Table
Modifi

Materi

Hercul
Fiberit
Amivid
pt0ðcÞ ¼ Gðc j a; bÞ ¼ ca�1

baCðaÞ exp � c
b

� 

;

where C(a) is the standard Gamma function, it turns to the following Gamma distribution where both
parameters are changed
prð�c2mÞ ¼ G c j 2ma; b
2m


 �
:

Unfortunately, the widely used Weibull distribution does not provide such comfortable convolution as the
previous examples and the resultant function must be evaluated numerically. Nevertheless, the resultant
function may also be approximated with high accuracy by a Weibull function. In order to estimate the re-
sult of the convolution (35), one may take advantage of the fact that independently of the used function, the
resultant convoluted function will have the same average as the initial distribution pt0(c) and the variance
reduced proportionally to the number of participating functions:
g2m ¼ g;

x2
2m ¼ x2

2m
:

ð36Þ
For Weibull distribution (32) the mean and the variance are defined respectively as follows:
g ¼ cmin þ c0 Cðð1þ aÞ=aÞ;
x2 ¼ c20½C ð2þ aÞ=að Þ � C2 ð1þ aÞ=að Þ�;

ð37Þ
where C(x) is the standard Gamma function.
Comparison of the two laminated systems defined above, with help of equations (36), leads to the fol-

lowing relations between the corresponding averages and variances:
g1 ¼ g2

m1x
2
1 ¼ m2x

2
2

ð38Þ
where subindexes 1 and 2 denote the statistical characteristics for ½0�n1=90�m1
�s and ½0�n2=90�m2

�s stacking se-
quences respectively. Substitution of the mean and variance definitions for the Weibull distribution func-
tion (37) for each 90� thickness into (38), yields the following two equation system:
Cðð2þ a2Þ=a2Þ � C2ðð1þ a2Þ=a2Þ
C2ðð1þ a2Þ=a2Þ

¼ m2

m1

½C ð2þ a1Þ=a1ð Þ � C2 ð1þ a1Þ=a1ð Þ�
C2ðð1þ a1Þ=a1Þ

c02 ¼ c01
Cðð1þ a1Þ=a1Þ
Cðð1þ a2Þ=a2Þ

;

ð39Þ
1
ed parameters of Weibull distribution for different laminate systems

al cmin (J/m2) [0n/90]s [0n/902]s [0n/903]s [0n/904]s

a c0 (J/m
2) a c0 (J/m

2) a c0 (J/m
2) a c0 (J/m

2)

es 3501-6/AS4 207.9 1.0000 3.0000 1.4355 3.3040 1.7915 3.3727 2.1013 3.3872
e 934/T300 600.0 0.9362 3.1309 1.3365 3.5129 1.6649 3.6115 1.9514 3.6396
� K Polymer/IM6 773.5 0.8858 6.9851 1.2581 7.9728 1.5642 8.2523 1.8320 8.3449
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where the parameters denoted by subindex 1 and subindex 2 are for different numbers of conjunct layers
2m1 and 2m2 respectively.

If the distribution parameters a1 and c01 of the Weibull distribution for any laminate are known (from
experimental data fitting), new parameters a2 and c02 defining the probability function prð�cÞ for another
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Fig. 8. Numerical simulation results.
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laminate may be determined in terms of the initial parameters by solving the system (39). The first equation
in (39) uniquely determines the power a2 and being substituted to the second equation, derived from the
equivalence of the means, provides the reference parameter c02. It is interesting to note here that the thicker
the 90� ply and larger number of sub-layers are used for calculating the average c, the closer the resultant
function will approach the normal distribution, which is the essential feature of the convolution (35).

In order to test the model, the results of the numerical simulation proposed in Section 5 were compared
with experimental data published in Liu and Nairn (1992). For each material one stacking sequence was
chosen. In all the examples the random points of possible crack location were uniformly distributed along
the laminates. The distance between the points lr was varied, in order to make the convolution lead to the
correct results for the crack density growth. At each point a random value of c was generated in accordance
with the Weibull distribution. The corresponding distribution parameters were estimated to fit the experi-
mental relations between crack density and applied stress. The parameters of the Weibull distribution for
the other laminate systems were calculated with the help of Eqs. (39). In all the examples the calculated
reference length is about lr = 0.1t0, as it was suggested in Section 5. The results are summarized in Table 1.

Some examples of the numerical simulation results with the fitted and calculated parameters of distribu-
tion are shown in Fig. 8. It has to be noted that the deviation of the curves calculated with help of the con-
volution principle is in good agreement with the experimental data.
7. Probabilistic criterion of cracking

Finding the minimal strength distribution associated with unspecified flaw field in a volume element is
the basic goal of the probabilistic fracture mechanics. Therefore, it is natural to use the methods of the
probability theory for our purpose. We start with a simple probability treatment. Let P(L) be the proba-
bility of occurrence of at least one point x* inside a laminate segment of length L, such that the critical en-
ergy release rate at this point is equal or less than the local mechanical energy release rate at current stresses,
which corresponds to the failure event in the segments
P ðLÞ ¼ P ð9x
 2 L : cðx
Þ 6 Gðx
ÞÞ: ð40Þ

The probability of the opposite event, i.e. nonoccurrence of a critical flaw inside L will be defined as PðLÞ
P ðLÞ ¼ P ð 9= x
 2 L : cðx
Þ 6 Gðx
ÞÞ ð41Þ

in such a way that
P ðLÞ ¼ 1� PðLÞ: ð42Þ

Nonoccurrence of a failure event inside L means that the critical energy release rate c(x) is greater than the
mechanical energy release G(x) at all points inside L
P ðLÞ ¼ P ð 9= x
 2 L : cðx
Þ 6 Gðx
ÞÞ ¼ P ðcðxÞ > GðxÞ 8x 2 LÞ: ð43Þ

Let us divide the segment L into k intervals of small length D x. Under the assumption that the probabilities
of failure nonoccurrence at the intervals Dx are independent, we can rewrite the previous as:
P ðLÞ ¼
Yk
i¼1

P ðDxÞ ð44Þ
where the product is over all elements Dx forming L. If the probability of critical flaw occurrence is the
same for all intervals Dx forming L, which corresponds to the homogeneous stress field G(x) = G = const.
(as observed in a undamaged laminate), the product can be replaced by a power function:
P ðLÞ ¼ P ðDxÞk ¼ PðDxÞL=Dx: ð45Þ
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This yields the probability of cracking inside element Dx
P ðDxÞ ¼ 1� P ðDxÞ ¼ 1� P ðLÞDx=L ¼ 1� 1� P ðLÞð ÞDx=L: ð46Þ

Now, let us consider the segment lr, for which the probability function of the critical flaw occurrence
Pr � P(lr) is known, and divide it into intervals of length Dx. An analogous treatment will lead to the fol-
lowing expression:
P ðDxÞ ¼ 1� ð1� P rÞDx=lr : ð47Þ

Comparing (46) to (47) we can obtain the probability of failure event inside the interval L in terms of
known probability of failure inside lr
P ðLÞ ¼ 1� ð1� P rÞL=lr : ð48Þ

If the function G(x) is nonuniform along segment L, the probability of failure occurrence varies with the
value of function G(x). In this case we can divide L into such infinitesimal Dx, that the function G(x)
may be assumed constant along the element. Hence,
P ðLÞ ¼ 1�
Yk
i¼1

ð1� P ðDxiÞÞ: ð49Þ
For any Dx located at xi Eq. (47) may be rewritten as follows:
P ðDxÞ ¼ 1� ð1� P rðxiÞÞDx=lr ; ð50Þ

where
P rðxiÞ � P ð9x
 2 lr : cðx
Þ 6 GðxiÞÞ

is the probability of cracking inside the reference length lr under the external loads producing the same
mechanical energy release as at the location xi. Thus, substituting (50) into (49) one can obtain
P ðLÞ ¼ 1�
Yk
i¼1

ð1� P rðxiÞÞDx=lr : ð51Þ
The product in the right-hand side of Eq. (51) may be replaced by summation
P ðLÞ ¼ 1� exp
Xk
i¼1

lnð1� P rðxiÞÞDx=lr
 !

ð52Þ
and taking the limit Dx! 0 the above equation is rewritten as following:
P ðLÞ ¼ 1� exp �
Z L

0

ln
1

1� P rðxÞ


 �
dx
lr


 �
: ð53Þ
This defines the probability of failure event occurrence under certain loading conditions inside a laminate
segment of length L.

Let us consider a laminate segment of length l between two neighboring transverse cracks and assume
that the probability function Pr is known. In Fig. 9 the energy release rate as a function of possible crack
location is schematically shown together with corresponding probability Pr(x) which assumes an existence
of minimal value cmin. The lowest curve corresponds to the external load at the moment when the energy
release function G(x) reaches cmin at its highest point (r1 in Fig. 9). In principle, new crack formation be-
comes possible at this point, but the probability of this event is negligible, because an occurrence of specific
value cmin at specific location is almost impossible. In order to increase the probability of cracking and



Fig. 9. Possible locations of new crack appearance for different stress levels (r1 < r2 < r3).
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make it reach a reasonable value, the external load must be increased. This increases the values of function
G(x) and introduces them into the range of existing values of the critical energy release rate: Pr > 0. The
higher G(x) values above cmin the greater the probability of failure.

At the same time, the range of possible locations of a new crack appearance expands, approaches the
block edges and moves away from the block middle (compare possible location ranges for r1, r2 and r3

in Fig. 9). The deeper G(x) gets into the range of existing c, the wider the interval becomes where a new
crack may appear inside. Thus we take into account that the probability of a new crack formation is
not necessarily in the middle distance between two adjacent cracks.

The described phenomenon has a profound effect on the relation between the stress and crack density
especially during cracking initiation. A shorter block will reach some cracking probability at higher stresses
than a longer one, in contrast to the energy criterion for deterministic surface energy c which provides the
same cracking stress for all blocks with noninteractive zone between cracks. Hence, slower increase in crack
density with external load applying is observed compared to that obtained for deterministic c.
8. Probabilistic criterion of progressive cracking

Consider a cracked laminate of length L0 subjected to external tensile stress r. It may be represented as a
sequence of blocks of lengths li, i = 1,2, . . .,n. Thus Eq. (53) obtains the form
P ðL0Þ ¼ 1� exp �
Z
P

i
li

ln
1

1� P rðxÞ
dx
lr

 !
¼ 1� exp �

X
i

Z
li

ln
1

1� P rðxÞ
dx
lr

 !
: ð54Þ
For simplicity the above equation may be rewritten by averaging
P ðL0Þ ¼ 1� expð�nIÞ ð55Þ

where n is a number of blocks forming the laminate of length L0 and �I is an average integral defined as
following:
I ¼
Z L0

0

pðlÞdl
Z l

0

ln
1

1� P rðxÞ
dx
lr

: ð56Þ
Here p(l) is a PDF of block lengths, defined in terms of length l frequency
pðlÞdl ¼ nðlÞ
n

where n(l) is a number of blocks with length inside dl neighborhood around l. The variable of integration in
(56) is constrained by the laminate length L0.
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However, the above equation, as well as (53), is not a probability of cracking, but of random coinci-

dence between c(x) and G(x). It does not imply any known data about the distribution c(x) along the
laminate. It is like a previously unloaded laminate containing artificial transverse microcracks and
subjected to external stresses. A real laminate has a cracking history providing us with additional infor-
mation about the c(x) distribution. Taking into account that the laminate experiences cracking events
from its virgin state until the current crack density, one can say that some flaws have already turned
into cracks and small values of c have already been ‘‘used’’ during the previous cracking and must
be excluded from consideration at the current cracking stage. Moreover, if the laminate has produced
a new crack due to the load rj at some point, proves that the rest of the laminate, except this point,
has survived at this stress. This proves that there are no loaded points along the laminate with toughness
less than G(x) being generated at stresses rj.

This additional information about cracking prehistory can be taken into account by considering the con-
strained probability of the laminate cracking in the form
P cr ¼
PðrjÞ � P ðrj�1Þ
1� Pðrj�1Þ

ð57Þ
where P(rj � 1) is the probability of random coincidence at the known previous closest state of loading with-
out new crack formation. Such a state is the moment just before the previous crack has been formed. Then,
substituting Eq. (55) into (57) one can obtain
P cr ¼ 1� exp �njIj þ nj�1Ij�1

� �
: ð58Þ
During transition from the state j � 1 to j two events occur: (i) a new crack is formed at stresses rj�1, the
values of function G(x) reduce stepwise inside a cracked block, which leads to the decrease of the overall
probability of cracking also; (ii) additional stress increase leads to the energy release G(x) increasing along
the whole laminate together with the probability of new cracking. In total, these alternating changes have
minimal effect on the average integral I , which may be represented as
I j ffi Ij�1 þ
dIj�1

dc
Dc ð59Þ
where c is the crack density. Substituting (59) together with nj � 1 = nj�1 into (58), the following form is
obtained:
P cr ¼ 1� exp �I � n
dI
dc

Dc

 �

: ð60Þ
Note, that the multiplication of a small increment of the crack density Dc = 1/L0 by a large number of
blocks n = cL0 produces the finite value of the crack density c. Hence, Eq. (60) reduces to the following
simple equation:
P cr ¼ 1� exp �I � dI
dc

c

 �

¼ 1� exp � d

dc
ðcIÞ


 �
or the same in terms of nondimensional average block length �q
P cr ¼ 1� exp � d

d�q
I
�q


 �
 �
:
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The overall cracking probability Pcr is now assumed to be constant during the cracking process, which
yields the simple differential equation
d

dc
Ic
� �

¼ lnð1� P crÞ�1
with solution in the form
I ¼ lnð1� P crÞ�1ð1þ B=cÞ

where B is a constant, which vanishes due to the initial condition at c = 0. Eq. (58) reduces to the simple
equation
P cr ¼ 1� expð�IÞ; ð61Þ

which is the exponential probability distribution function. The immediate conclusion from (61) is that the
expected value of I at the moment of the new crack formation corresponds to the quantile
Pcr = 1 � exp(�1), which results in the equality:
I �
Z L0

0

pðlÞdl
Z l

0

ln
1

1� P rðxÞ
dx
lr

¼ 1: ð62Þ
Further treatment of Eq. (62) requires an exact expression of block length distribution p (l) for each step of
the cracking process, or additional simplifying assumption. Such simplification becomes possible due to
some observations made during numerous executions of the stochastic simulation described above. The def-
inition of I given in (56) implies integration over the block lengths containing points with G(x) > cmin. If this
length range is narrow enough, the integral I may be replaced by its value at a representative length l*,
which is identified with the length of the current cracking block.
I ¼
Z L0

0

pðlÞdl
Z l

0

ln
1

1� P rðxÞ
dx
lr

ffi Iðl
Þ ¼
Z l


0

ln
1

1� P rðxÞ
dx
lr

: ð63Þ
It has been observed that independent of the laminate stacking sequence or the material used, there exists a
stable relation between the current cracking block length and the average length of the existing blocks. For
a dominant range of the applied stresses, the ratio of the cracking block length to the average length is
about 1.5 (Fig. 10)
l
 � 1:5�l: ð64Þ

In this case we can rewrite Eq. (62)
Z 1:5�l

0

ln
1

1� P rðxÞ
dx
lr

� 1: ð65Þ
Thus, for a given stress one can estimate the average between crack distance �l and corresponding average
crack density 1=�l by satisfying (65), or solving the inverse problem of finding the required stress to form the
given average crack density.

In the case when the probability distribution of the critical energy release rate Pr is described by the
Weibull distribution function (33), the criterion (65) reduces to the following simple form:
Z 1:5�l

0

GðxÞ � cmin

c0m


 �am dx
lr

� 1; GðxÞ P cmin: ð66Þ
This can be rewritten in terms of nondimensional variables as following:
Z 1:5�q

�1:5�q

GðnÞ � cmin

c0m


 �am t1
lr
dn � 1; GðnÞ P cmin ð67Þ



Table 2
The thermomechanical properties, lamina thickness and effective stress-free temperature (taken from Nairn and Hu, 1992)

Property Amivid� K Polymer/IM6 Hercules 3501-6/AS4 Fiberite 934/T300

EA (MPa) 134,000 130,000 128,000
ET (MPa) 9800 9700 7200
GA (MPa) 5500 5000 4000
GT (MPa) 3600 3600 2400
mA 0.3 0.3 0.3
aA (ppm/�C) �0.09 �0.09 �0.09
aT (ppm/�C) 28.8 28.8 28.8
T (�C) �225 �125 �125
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Fig. 10. Typical ratio of the cracking block length to the average length.
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where G(n) is defined by the right-hand side of the local criterion (27)
GðnÞ ¼ ðk1r0 þ r1T Þ2C22t1 v
1:5�q þ n

2


 �
þ v

1:5�q � n
2


 �
� vð1:5�qÞ


 �
: ð68Þ
Eq. (67) may be solved numerically for any applied stress and temperature.
The reference length lr appearing in the current section may be chosen arbitrarily with corresponding

modification of the reference parameter c0m. One can identify the length lr with the characteristic length
introduced in Section 4. For all the examples the reference length lr = 0.1t0 = 0.015 mm leads to the best
convolution results, as is concluded in Section 6. Consequently, the parameters of the distribution functions
c0m and am correspond to Pr, and must be modified for different 90� ply thicknesses, as described above
and presented in Table 1 for tested laminate systems. Other used material parameters are accumulated
in Table 2.

In Figs. 11 and 12 the external applied stress versus the corresponding crack density calculated by (66) is
presented for different materials and stacking sequences. The experimental data shown is taken from Nairn
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Fig. 11. Crack density vs. external applied stress.
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and Hu (1992). Good agreement between the model prediction and the experiments is obtained. For some
laminates (Hercules 3501-6/AS4 [0/904]s and Fiberite 934/T300 [0/90]s) a small left or right shift must be
produced to fit the experiments. It may be explained by a slight mismatch in guessed thermal residual stres-
ses through the curing temperature T, which may vary from sample to sample, due to various random dis-
turbances during the laminate fabrication process (Fig. 12).
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9. Conclusion

A new method for prediction of the transverse crack accumulation due to the external mechanical and
thermal load has been developed through the combination of the variation stress analysis, the finite fracture
criterion and the probabilistic approach. Stochastic properties are assumed for the specific surface energy,
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noticing that the energy, required for a new crack to appear, is related to a random microflaw distribution
in the material.

A numerical model of the cracking process has been established, when the values of the specific surface
energy, randomly distributed along the laminate, are compared to the mechanical energy release, calculated
with help of the variational stress analysis and the local finite fracture criterion. The simulations provide the
growth of the crack density as a function of the applied load as well as the probability density function of
the inter-crack distances. The notion of the local toughness element has been introduced and discussed. The
application of the finite fracture criterion implies modification of the PDF of the specific surface energy
when different transverse ply thicknesses are considered. Is has been shown that a convolution procedure
is required, which leads to a system of coupled equations to be solved for new values of the PDF
parameters.

A simple energy base probabilistic cracking criterion has been developed. The interval between the
cracks wherein a new crack can appear is shown to depend on the applied stress. Smooth crack density
growth with increasing external load during the initial cracking can be also explained from the probabilistic
point of view. Good agreement between the transverse crack accumulation due to the external load, pre-
dicted by the suggested method, and the corresponding experimental data has been obtained.
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